Home » Eventi » Società Italiana Progresso della Zotecnia » Environmental Nanotechnology

 
 

Environmental Nanotechnology

 
 

 

Environmental Nanotechnology

 

Nanotechnology is being used in several applications to improve the environment. This includes cleaning up existing pollution, improving manufacturing methods to reduce the generation of new pollution, and making alternative energy sources more cost effective.

Convergenze tra tecnologie nano e micro Fiera della Microelettronica, Vicenza.
Atti del convegno: “Microsistemi e sensori microelettronici per nuove applicazioni industriali”

NanoBioSensor Lund

With this report we wish to give a short overview of some of these bionanoprobes that are currently being used and developed and to give the reader an insight into the possibilities of these new type of devices and how they are manufactured and the underlying physical principles that govern their operation.

 

The Application of Nanotechnology to Environmental Issues

In trying to help our ailing environment, nanotechnology researchers and developers are pursuing the following avenues:

Generating less pollution during the manufacture of materials. One example of this is how researchers have demonstrated that the use of silver nanoclusters as catalysts can significantly reduce the polluting byproducts generated in the process used to manufacture propylene oxide. Propylene oxide is used to produce common materials such as plastics, paint, detergents and brake fluid.

Producing solar cells that generate electricity at a competitive cost. Researcher have demonstrated that an array of silicon nanowires embedded in a polymer results in low cost but high efficiency solar cells. This, or other efforts using nanotechnology to improve solar cells, may result in solar cells that generate electricity as cost effectively as coal or oil.

Increasing the electricity generated by windmills. Epoxy containing carbon nanotubes is being used to make windmill blades. The resulting blades are stronger and lower weight and therefore the amount of electricity generated by each windmill is greater.

Cleaning up organic chemicals polluting groundwater. Researchers have shown that iron nanoparticles can be effective in cleaning up organic solvents that are polluting groundwater. The iron nanoparticles disperse throughout the body of water and decompose the organic solvent in place. This method can be more effective and cost significantly less than treatment methods that require the water to be pumped out of the ground.

Capturing carbon dioxide in power plant exhaust. Researchers are developing nanostructred membranes designed to capture carbon dioxide in the exhaust stacks of power plants instead of releasing it into the air.

Clearing volatile organic compounds (VOCs) from air. Researchers have demonstrated a  catalyst that breaks down VOCs at room temperature. The catalyst is composed of porous manganese oxide in which gold nanoparticles have been embedded.

Reducing the cost of fuel cells. Changing the spacing of platinum atoms used in a fuel cell increases the catalytic ability of the platinum. This allows the fuel cell to function with about 80% less platinum, significantly reducing the cost of the fuel cell.

Storing hydrogen for fuel cell powered cars. Using graphene layers to increase the binding energy of hydrogen to the graphene surface in a fuel tank results in a higher amount of hydrogen storage and a lighter weight fuel tank. This could help in the development of practical hydrogen-fueled cars.

Environmental Nanotechnology Research Centers

Center for Biological and Environmental Nanotechnology

Center for Environmental Implications of Nanotechnology (Duke University)

Center for Environmental Implications of Nanotechnology (UCLA)

Comments are closed

Sorry, but you cannot leave a comment for this post.